Plaques Formed by Mutagenized Viral Populations Have Elevated Coinfection Frequencies
نویسندگان
چکیده
The plaque assay is a common technique used to measure virus concentrations and is based upon the principle that each plaque represents a single infectious unit. As such, the number of plaques is expected to correlate linearly with the virus dilution plated, and each plaque should be formed by a single founder virus. Here, we examined whether more than one virus can contribute to plaque formation. By using genetic and phenotypic assays with genetically marked polioviruses, we found that multiple parental viruses are present in 5 to 7% of plaques, even at an extremely low multiplicity of infection. We demonstrated through visual and biophysical assays that, like many viral stocks, our viral stocks contain both single particles and aggregates. These data suggest that aggregated virions are capable of inducing coinfection and chimeric plaque formation. In fact, inducing virion aggregation via exposure to low pH increased coinfection in a flow cytometry-based assay. We hypothesized that plaques generated by viruses with high mutation loads may have higher coinfection frequencies due to processes restoring fitness, such as complementation and recombination. Indeed, we found that coinfection frequency correlated with mutation load, with 17% chimeric plaque formation for heavily mutagenized viruses. Importantly, the frequency of chimeric plaques may be underestimated by up to threefold, since coinfection with the same parental virus cannot be scored in our assay. This work indicates that more than one virus can contribute to plaque formation and that coinfection may assist plaque formation in situations where the amount of genome damage is high.IMPORTANCE One of the most common methods to quantify viruses is the plaque assay, where it is generally presumed that each plaque represents a single infectious virus. Using genetically marked polioviruses, we demonstrate that a plaque can contain more than one parental virus, likely due to aggregates within virus stocks that induce coinfection of a cell. A relatively small number of plaques are the products of coinfection for our standard virus stocks. However, mutagenized virus stocks with increased genome damage give rise to a higher amount of plaques that are chimeric. These results suggest that coinfection may aid plaque formation of viruses with genome damage, possibly due to processes such as complementation and recombination. Overall, our results suggest that the relationship between viral dilution and plaque number may not be linear, particularly for mutagenized viral populations.
منابع مشابه
Reply to Drayman, “Observed High Coinfection Rates Seem To Be a Result of Overlapping Plaques”
On behalf of my coauthors, I thank Dr. Drayman for his interest in our recent paper in which we examined whether plaques can contain more than one parental virus (1). We found that a small percentage of plaques (5 to 7%) contain multiple parental viruses, and we concluded that virion aggregation contributes to chimeric plaque formation. In a distinct flow cytometry-based assay that used a highe...
متن کاملIsolation of temperature-sensitive conditional lethal mutants of "fixed" rabies virus.
In an attempt to induce temperature-sensitive (ts) conditional lethal mutants of rabies virus, stocks of a plaque-purified substrain of strain CVS fixed rabies virus were subjected to mutagenesis by HNO(2), 5-fluorouracil, or 5-azacytidine. It was necessary to prepare virus stocks from clones of mutagenized virus selected at random and to test subsequently each stock for possible ts characteris...
متن کاملHigh-resolution Genomic Surveillance of 2014 Ebolavirus Using Shared Subclonal Variants
BACKGROUND Viral outbreaks, such as the 2014 ebolavirus, can spread rapidly and have complex evolutionary dynamics, including coinfection and bulk transmission of multiple viral populations. Genomic surveillance can be hindered when the spread of the outbreak exceeds the evolutionary rate, in which case consensus approaches will have limited resolution. Deep sequencing of infected patients can ...
متن کاملStochastic model of virus and defective interfering particle spread across mammalian cells with immune response
Much of the work on modeling the spread of viral infections utilized partial differential equations. Traveling-wave solutions to these PDEs are typically concentrated on velocities and their dependence on the various parameters. Most of the investigations into the dynamical interaction of virus and defective interfering particles (DIP), which are incomplete forms of the virus that replicate thr...
متن کاملThe influence of CpG and UpA dinucleotide frequencies on RNA virus replication and characterization of the innate cellular pathways underlying virus attenuation and enhanced replication
Most RNA viruses infecting mammals and other vertebrates show profound suppression of CpG and UpA dinucleotide frequencies. To investigate this functionally, mutants of the picornavirus, echovirus 7 (E7), were constructed with altered CpG and UpA compositions in two 1.1-1.3 Kbase regions. Those with increased frequencies of CpG and UpA showed impaired replication kinetics and higher RNA/infecti...
متن کامل